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Abstract 
 
 
A new generic neural network (NN) application -- improving computational efficiency of certain 
processes in numerical environmental models – is considered.  This approach can be used to accelerate 
the calculations and improve the accuracy of the parameterizations of several types of physical 
processes which generally require computations involving complex mathematical expressions, including 
differential and integral equations, rules, restrictions and highly nonlinear empirical relations based on 
physical or statistical models.  It is shown that, from a mathematical point of view, such 
parameterizations can usually be considered as continuous mappings (continuous dependencies between 
two vectors) and, therefore, NNs can be used to replace primary parameterization algorithms.  In 
addition to fast and accurate approximation of the primary parameterization, NN also provides the 
entire Jacobian for very little computation cost.  
 
Four particular real-life applications of the NN approach are presented here: for oceanic numerical 
models, a NN approximation of the UNESCO equation of state of the sea water (NN for the density of 
the seawater) and an inversion of this equation (NN for the salinity of the seawater); for atmospheric 
numerical models, a NN approximation for long wave radiative transfer code; and for wave models, a 
NN approximation for the nonlinear wave-wave interaction.  In all considered applications a significant 
acceleration of numerical computations has been achieved.  The first two of these NN applications have 
already been implemented in the multi scale ocean forecast system. at NCEP.   
 
The NN approach introduced in this paper can provide numerically efficient solutions to a wide range of 
problems in numerical models where lengthy, complicated calculations, which describe physical, 
chemical and/or biological processes, must be repeated frequently.  
 
Keywords: neural networks, numerical modeling, atmospheric modeling, oceanic modeling, wave 
modeling, equation of state, nonlinear interaction, parameterization of physics 
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1. Introduction 
 

In this paper, we discuss a recently emerged application of neural networks for efficient (fast 

and accurate) calculations of the computationally expensive and complex mathematical formulations 

involved in environmental numerical models.  Any atmospheric or oceanic circulation model is based on 

a set of prognostic and diagnostic differential equations together with additional equations required to 

obtain a mathematically closed system.  Such a system, in principle, can then be solved to predict the 

evolution of the environment in time if the initial conditions and any required external boundary 

conditions are prescribed.  Even though the forecast problem may now be considered solvable in a 

theoretical sense, in the real world of simulation, it is necessary to deal with practical aspects of available 

computational resources and minimize the computer time taken to produce a run, in particular in the 

context of operational forecast systems.  

 

The numerical model contains terms that appear in the dynamical equations, representing the effects of 

unresolvable subgrid scale processes.  These effects need to be parameterized in terms of the 

dependent variables.  Also, implicitly contained in the system are processes that deal with model physics 

such as radiation, convection, nonlinear wave-wave interaction, etc, which need to be parameterized.  

Accurate treatments of such parameterizations generally require computations involving complex 

mathematical expressions, which may include differential and integral equations, rules, restrictions, highly 

nonlinear empirical expressions, etc. that are developed based on physical or statistical models.  The 

complex mathematical formulations of these processes require considerable computational resource.   

 

For example, a spectral atmospheric model with a well-developed description of physics and subgrid 

scale parameterizations may spend up to 70% of calculation time for simulating these processes 

(Estrade et al. 2001).  The infrared radiative heating/cooling code requires more than 10% of the 

computing time in the European Centre for Medium-Range Weather Forecast (ECMWF) general 

circulation model and in the National Centers for Environmental Prediction (NCEP) global model, even 

though the computations are not afforded at every grid point (at ECMWF) and at every time step. 
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In ocean models, the estimation of the full UNESCO equation of state to compute the seawater density, 

represented by an empirically derived highly nonlinear equation relating density to pressure, salinity, and 

temperature, takes a very significant amount (~40% in high resolution models) of the total computational 

effort.   In addition, most forecast models include data assimilation procedures as an integral part of the 

forecast system to improve the initial conditions of the model.  When dealing with ocean models, most 

often the data assimilation consists of assimilating surface and subsurface temperature observations to 

correct the model’s thermal field.  This temperature correction automatically makes it necessary to 

adjust the salinity field in the ocean model in order to avoid gravitational instabilities in the water column. 

 This requires inverting the complicated oceanic equation of state, which makes the computational effort 

even more time-consuming than the forward problem of computing the density itself.  Another example 

where intensive computations are needed in a forecast model is the calculation of the land surface 

temperature using a set of equations describing the atmospheric boundary layer and physical processes 

in the soil.  Yet another example of intensive computational problem in forecast models is the wind wave 

forecasting problem in which an exact calculation of the nonlinear wave-wave interactions using the 

formulation of Hasselmann (1963) takes a prohibitively long time. 

 

In view of the constraints imposed on the available computer resources, the calculation time allowed for 

each parameterization is strictly limited in most operational forecast models.  Hence, very often it is 

necessary to use simplified forms of these complex representations in carrying out the time integrations in 

a forecast model, thereby sacrificing the accuracy of forecasts.   For example, the nonlinear wave 

interactions in a wave forecast model are replaced by a simplified discrete interaction approximation 

(DIA) (see Hasselmann et al 1985).  Similarly, simplified fast parameterizations of physics are used in 

many parts of atmospheric and oceanic models.  In most of these cases, accurate physical models have 

been developed, but they cannot be used because they are computationally too expensive.  Often 

simplified (even oversimplified due to computational efficiency requirements) parameterizations are 

obtained, for example, by neglecting higher order terms of perturbation theory, by using empirical 
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approximations, or simply by neglecting the effects, which complicate the calculations.  It is common in 

many parameterization schemes that the number of input and output variables is relatively small, whereas 

the volume of internal calculations is large.  A typical example is the parameterization of the radiative 

fluxes in the atmosphere. Indeed accurate treatment of cloud-radiation and aerosol-radiation interactions 

involves elaborate and numerically onerous 3-dimensional scattering methods. Hence, most often the 

specific parameterization is a result of a compromise between accuracy and computational efficiency 

with an (sometimes) unpredictable effect on the forecast. 

 

Improvements in forecast modeling can be achieved not only by improving the representation of such 

parameterizations as our understanding of the underlying physical processes increases but also by 

improving our ability to compute these parameterizations accurately within the constraints imposed by 

the available computer resources. 

 

In this paper we present some of the problems dealing with physical parameterizations and their 

computations from a different (formal mathematical) point of view, namely that of improving the 

computational efficiency of available algorithms.  We propose a generic approach, which is based on 

developing fast and accurate parameterizations of physics by approximating solutions of exact physical 

models using neural networks (NNs).  From this formal point of view an exact (best known) physical 

model representing a physical process performs a smooth conversion of an input vector of parameters, 

X = {x1, x2, ..., xn}, X ∈ ℜn into an output vector of parameters, Y = {y1, y2, ..., ym}, Y ∈ ℜ m.  Thus, 

each output parameter yi is a continuous function of multiple input variables x1, x2, ..., xn (input vector 

X).   Symbolically this input-output dependence is depicted in Fig. 1.a and can be written as 

 

Y = F(X); X ∈ ℜn, Y ∈ ℜm     (1.a) 
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Figure 1.  Graphical representation of forward (a) and inverse (b) parameterizations. 
 

 

If X and Y are related through a cause and effect principle, the forward parameterization, eq. (1.a), can 

be derived from first principles.  It is usually a well-posed problem.   If the inverse dependence    

 

X = f(Y);  X ∈ ℜ n, Y ∈ ℜ m     (1.b) 

is required (see Fig. 1.b) in a numerical model, the inverse problem should be solved, which implies that 

eq. (1.a) should be inverted.  A solution of the inverse problem (1.b) or an inverse parameterization 

provides each output parameter x i as a continuous function of multiple input variables y1, y2, ...,ym 

(vector Y is an input vector now).  Often the inverse parameterization (1.b) is an ill-posed problem, and 

sometimes multiple values of X can correspond to a single Y.    Forward, eq. (1.a), and inverse, eq. 

(1.b), parameterizations represent the same mathematical object - a continuous mapping which is a 

continuous relationship between two vectors.  Usually these input/output relationships are highly 

complex and nonlinear, but continuous or almost continuous (with a finite number of finite 
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discontinuities), for physical processes taken into account in atmospheric, oceanic, and wave models.  

Hence, if exact solutions to these complex relationships are calculated, however expensive the 

computational efforts may be, these solutions can be used by the generic mathematical tool - that is, the 

NNs - to produce fast and accurate approximations for continuous and almost continuous mappings 

(Funahashi 1989, Cybenko 1989, Chen and Chen 1995a,b, Attali J-G. and G. Pagès 1997).  In this 

approach, the costly exact calculation of the physics needs to be performed only once and “off line” to 

enable the development of the fast and accurate approximation.  After that only this fast and accurate 

approximation will be used to calculate the physics (coefficients of differential equations) “on line” in a 

numerical model.   

 

We assume that the readers of this journal are well familiar with the NN technique.  Therefore we do 

not describe this technique in the paper.  We only present here a brief list of main properties of NNs, 

which make them a very suitable generic tool for our application.   

• NNs are able to accurately approximate complicated nonlinear input/output relationships (any 

continuous and almost continuous nonlinear mappings).  

• while training the NN is often time consuming, its application is not.  After the training is finished 

(it is usually performed only once), each application of the trained NN is an estimation of a 

simple algebraic expression with known coefficients, which is practically instantaneous (several 

tens of floating point additions and multiplications).  

• NNs are analytically differentiable, in a way that make the calculation of entire Jacobian matrix 

cheap. 

• NN technique is flexible enough to accommodate various additional constraints, which may 

arise in this application.   

 
In Section 2 of this paper we present two (forward and inverse) parameterizations for oceanic models, 

in Section 3 for atmospheric, and in Section 4 a parameterization for wind wave models developed 

using NNs.  In Section 5, we discuss some important features of our approach and some generalizations 

of standard NN techniques, which are required to accommodate these features.  
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2. Oceanic Applications: Neural Networks for Efficient Calculation of Sea Water Density 

or Salinity from the UNESCO Equation of State  

In this section, we apply a NN technique to two related problems in the fast calculation of physics in 

oceanic modeling and data assimilation.   (i) In most ocean models, the UNESCO International 

Equation of State for Seawater (e.g., UNESCO, 1981) (UES) is used for the calculation of the 

seawater density at each point of a 3-D grid using a relatively small time step.  The frequency of 

updating the density depends on specifics of the model.  For high-resolution models, the solution of this 

equation consumes a significant part of the overall computation time.  (ii) In the data assimilation 

process, assimilation of temperature alone, without making corresponding adjustments to salinity, in 

ocean models, which employ the full equation of state, can lead to problems of gravitational instabilities 

(Woodgate 1998, Chalikov et al. 1998).  To adjust the salinity, we need to calculate the salinity from 

UES as a function of temperature, density and depth (or pressure), i.e. solve an inverse problem in 

many points.  Numerical inversion of the UES is an iterative procedure, which can consume several 

orders of magnitude more time than solving of the UES itself.  

 

The UES for seawater gives the following expression for the density anomaly d?  (kg/m3) as described 

by Foffonoff and Millard (1983), 

   

(2) 

 

 

 

where ?  is the density of seawater in kg/m3, T is the temperature in °C,  S  is the salinity in practical 

salinity units (psu), P is the pressure, and K(T,S,P) is a bulk modulus (UNESCO, 1981). 

 

The UES (2) is empirically based and given over a three-dimensional domain D = {-2 < T < 40°C, 0  

< S < 40 psu, and 0 < P < 10000 decibars}.  This domain represents all possible combinations of T, S, 
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and P, which are globally encountered.  Mathematically, the functions ?(T,S,0) and K(T,S,P) are 

represented by multidimensional high degree polynomials and, as a result, the density (2) is a ratio of 

two three-dimensional polynomials which contain more than 40 parameters.   

 

The UES has two major drawbacks when it is applied in the context of ocean modelling.  The first is its 

cumbersome form.  For high-resolution models, the solution of this equation at each point of a three-

dimensional grid for each time step consumes a significant part (up to 40%) of the overall computation 

time.  Second, it is not a simple matter using the UES to obtain solutions for salinity of sea water, since 

this solution represents an inverse dependence.      

 

The UES determines the density field from observed temperature, salinity, and pressure to within a 

standard error of approximately 0.009 kg m-3; however, there are several natural processes  (e.g. 

variations in the composition of dissolved salts) (Apel, 1987), contributing to the uncertainty in the 

density of natural seawater.  The resulting natural uncertainty in the density is of the order of 0.1 kg m-3 

(Krasnopolsky et al. 2000, 2001b).  Taking these uncertainties into account, it does not make sense to 

use parameterization with higher accuracy in numerical ocean models if accuracy and computing time 

increase together.  This is why the accuracy of 0.1 kg m-3 was selected as the expected accuracy for the 

NN parameterization. The accuracy of the NN parameterization for salinity expressed in terms of 

density was also expected to be better than 0.1 kg m-3.  

 
Since the depth Z is used in NCEP ocean model as a vertical coordinate, and there exist a simple 

pressure-depth relationship (Krasnopolsky et al. 2001b), we use Z instead of P in our consideration.  

The UES defines two relationships (second relationship for salinity through inversion), 

 ? = ?(T,S,Z)          (3.a)    

 S = S(T,?,Z)          (3.b)    

which are continuous mappings (degenerated mappings because one dimensional vectors are on the 

left).  The NN technique was applied to approximate (3.a) and (3.b).  To create a training set for these 

NNs  
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parameterizations in the three-dimensional domain D (see above), 4,000 points (Ti,Si,Zi) were 

generated on a grid.  The UES was used to estimate the density of seawater, ?i, for each point.  This 

simulated data set {?i,Ti, Si, Zi} was used in order to train the NNs to extract density and salinity.  NNs 

with three nonlinear neurons in one hidden layer and one linear neuron in the output layers were 

selected. Two NN parameterizations were obtained (see also Fig. 2): 

 

 ? = ?NN (T,S,Z)         (4.a)    

 S = SNN (T,?,Z)         (4.b)    

 

where both ?NN  and  SNN are expressed by : 

 

∑ ∑
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where ω, Ω, β , and Β are NN weights and biases.   Derivatives (Jacobian matrix) shown in Fig. 2 as 

additional NN outputs are not actual outputs, which are trained during the NN training; they are 

calculated analytically through direct differentiating eq. (5).  The NN parameterization (4a) for the 
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Figure 2.   Schematic representation of NN parameterizations for the 

density and salinity of seawater.  Additional outputs for derivatives are 
not trained, they are calculated. 
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density is about two times faster then the UES.  The calculation of the Jacobian matrix with the NN 

parameterization requires an additional time, which is about 70% of time required for the calculation of 

density.  The NN parameterization (4b) for the salinity is several hundreds times faster than an iterative 

numerical inversion of the UES.  In addition, the time required for the numerical inversion of the UES 

(rate of conversion of the iteration process) varies significantly.  It strongly depends on inversion 

algorithm and on the choice of the initial approximation for the salinity.    

  

To evaluate the accuracy of the NN approximation (4), 16,000 points were generated within the 

domain D on a grid, which did not include the training set points.   The density of sea water calculated 

from the UES (2) was compared to that calculated from the NN, ?NN(T,S,Z), using  (4.a).  Table 1 

shows several statistical measures of the differences (or errors) between the UES and the NN estimates 

for density.  In terms of the bias and the RMS differences, the NN results for density clearly satisfy the 

criterion mentioned above; both the bias and the RMS values do not exceed the uncertainties indicated 

there and are less than 0.1 kg m-3. 

 
Table 1.   Minimum, maximum, and mean (i.e., the bias) errors (ε) and the RMS error, all 
expressed in kg m-3 (ε = ?UES  - ?NN) 
 
Min ε  Max ε  Bias RMS 
-0.12 0.15 0.00 0.04 

 

To evaluate the errors in using the NN approach to estimate the salinity, we used the same 16,000 

points (?i, Ti, Si, Zi) which were used to estimate the density.  Initially, the NN for SNN (4.b) was 

applied to calculate a new salinity, si, using the corresponding values (Ti, ?i, Zi).  Then the differences 

(Si - si) were utilized to estimate the accuracy of the NN-derived salinities (first line  

in Table 2).  To further evaluate the quality of the NN-derived salinities, the UES was applied again, this 

time to the triad (Ti, si, Zi) to recalculate the density of seawater, ?′i.  If the NN-obtained values for 

salinity were perfect, then the density, ?′i, would be equal to ?i.  The differences between these two 

values, (?i - ?′i), were then used to further estimate the accuracy of the salinity-trained NN in terms of 
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the density  (second line in Table 2). 

 

 
Table 2.  Accuracies of the salinities estimated by the NN in terms of salinity and density.  
Minimum, maximum, and mean errors together with the RMS errors are presented. 
 
Units Min error Max error Mean error RMS error 
Psu -0.33 0.85 0.00 0.10 
Kg m-3 -0.27 0.71 0.00 0.08 

         

 

Table 2 shows that the NN estimates of salinity (4.b) have an RMS error of 0.1 psu.  In terms of the 

related error in density, this accuracy corresponds to an RMS error of 0.08 kg m-3, which again does 

not exceed the uncertainties discussed above. 

 

A substantial additional acceleration of calculations may be achieved by the use of differential increments 

of density, temperature, and salinity.  Hence, we extend our approach to estimate these quantities also.  

Additionally, an efficient way of substantially reducing the computational burden is to replace the 

calculations of density per se by 

calculations of its total differential 

  

                             (6)   

where ∆T and ∆S are increments of T and S, ∂?/∂T, and ∂? /∂S are functions of T, S, and z.  In this 

approach, after the density and its derivatives are calculated, eq. (6) is used during several (usually 

several tens) steps of integration to estimate the new density.  Then the density and its derivatives are 

recalculated, using the UES or NN approximation of the UES, to update the estimated values obtained 

using (6).   

 

The density and the derivatives ∂?/∂T and ∂? /∂S can be accurately calculated from the NN ?NN, eq. 

(4.a) (see also Fig. 2).  Thus, equation (6) can be reduced to    
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The estimation of the density using eq. (6) requires several calculations of the UES (in that case the 

Jacobians are computed by centered finite differences).  The estimation of the density using eq. (7) 

requires one estimate of the NN (4a) and its derivatives, which is faster than (6).  If ∂?NN/∂z is also used 

in (7) for vertical integration, the gain in the speed of calculations due to the use of the NN increases. 

 
Table 3.  Accuracies of the Jacobian estimated by the NN, in kg⋅ m-3⋅ K-1, kg⋅ m-3⋅ psu-1, and kg⋅  
m-3⋅ m-1.  Minimum, maximum, and mean errors together with the RMS errors are presented.  
RMSN error is the RMS error relative to the norm of the corresponding derivative. 
 

Derivative Min error Max error Mean error RMS error RMSN error 
∂?NN/∂T -0.04 0.06 0.01 0.02 6% 
∂?NN/∂S -0.02 0.02 0.003 0.006 0.8% 
∂?NN/∂z -0.0001 0.0001 0.0001 0.0001 2% 

         

Table 3 illustrates the accuracy of Jacobian calculations using the NN parameterization (4a) with three 

neurons in one hidden layer.  All errors are estimated with respect to the Jacobian calculated explicitly, 

using the UES (2).  The RMSN error is a relative error in percents with respect to the norm of the 

corresponding derivative.  Errors in derivatives do not exceed 6%, which is acceptable for calculation of 

density.    

  

The NN approach (7) is used in the high resolution Multiscale Ocean Forecast System (Chalikov et al. 

2002).  This use of NN and its derivatives has been shown to accelerate the density calculations about 

10 times with the error in the density calculations not exceeding the natural uncertainty 0.1 kg/m3.  

Therefore, the computational expense of calculating density has decreased from 40% to about 4-5% of 

the total time of integration as a result of using the NN approximation in the model.  
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3. Atmospheric Applications: Neural Networks for Efficient Calculation of Infrared 

Radiative Fluxes 

    
 The next application that we present tackles the problematic tradeoff between accuracy and 

speed in the atmospheric infrared radiation computations. Transfer of energy by infrared radiation 

significantly contributes to the variations of atmospheric temperature.  The infrared atmospheric 

spectrum encompasses a wide range of variability, from the slow-varying Planck function to the very 

detailed structures of the individual absorption bands. As a consequence, accurate modeling of the 

atmospheric radiative processes requires a high spectral resolution, which consumes a lot of computing 

time, and therefore can hardly be used for simulation of the atmosphere. Radiation computations also 

involve integrals over solid angle and altitude, that cannot be analytically solved and therefore 

significantly add to the computational burden. Two strategies are used, often simultaneously, to make 

the models affordable. On the one hand, statistical approaches have been developed that simplify the 

calculations of the three integrals (over solid angle, altitude and wave number) and of the impact of 

clouds (Goody and Yung 1989). On the other hand the computations are not performed at every time 

step and at every grid point of the atmospheric model (Morcrette 2000). As an example, in the NCEP 

forecast model, infrared radiation variables are updated every three hours only.  

 

The computational efficiency is even more an issue in elaborate four-dimensional variational (4D-Var) 

analysis schemes. These powerful data assimilation systems have been developed in operational weather 

centers, like ECMWF or MétéoFrance, to correct the atmospheric forecasts at regular times with the 

observations that have been received since the previous analysis: 4D-Var determines a statistically 

optimum forecast, given the initial forecast and its assumed error characteristics on the one side, and the 

observations with their error specifications on the other (e.g., Courtier et al. 1994). To do this, 

perturbations of the atmosphere need to be propagated in time at every step of the minimization process 

with a linearized physics. Only computationally efficient parameterizations can be used for this purpose.  

For instance, in the operational 4D- 
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Var physics at ECMWF, radiation perturbations are created by temperature changes only. Neither 

water vapor nor cloud evolution is taken into account (Mahfouf 1999).  

 

Neural network-based radiative transfer models (e.g., Escobar-Munoz et al. 1993, Key and Schweiger 

1998, Faure et al. 2001, Schwander et al. 2001) may be able to address these issues. In particular, the 

NeuroFlux approach (Chéruy et al. 1996, Chevallier et al. 1998b) has been successively tested in the 

Laboratoire de Météorologie Dynamique climate model (Chevallier et al. 1998a), in the ECMWF 

forecast model (Chevallier et al. 2000b) and is currently being tested in the ECMWF 4D-Var system.  

This section describes the method, updates the results and summarizes the experience gained by this 

approach on which considerable effort has been invested. 

 

NeuroFlux is mainly a neural-network-based version of the broadband radiation model of Morcrette 

(1991), hereafter EC-OPE, even though other models could be used in the training. EC-OPE was the 

operational code at ECMWF in the 90s. The integration over wave number is performed using a band 

emissivity method in six spectral regions covering the long-wave spectrum. The transmission functions 

for water vapor and carbon dioxide are fitted using Padé approximants. Multi-layer gray bodies 

represent the clouds (Washington and Williamson, 1977).  

 

NeuroFlux has been derived from EC-OPE using the same cloud representation and the Multi-Layer 

Perceptron. Consistently with the former, upward and downward fluxes are computed in NeuroFlux as: 

 

   (8) 

 

where  Pi is the pressure level, Fk is 

the infrared flux in the presence of a single layered black cloud in atmospheric layer k or the clear-sky 

flux (with the convention k=0 for clear sky), and ak is a weight. The ak’s are computed with a simple 

parameterization as a function of the layered cloud characteristics (cloud cover, liquid and ice water 

( ) ( ) ( ).i i k ik
k

aF P P F P= ∑
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contents, particle size, etc…) and depend on the way cloudy layers overlap. In NeuroFlux, the Fk’s are 

computed with artificial neural networks with single hidden layers, whereas EC-OPE uses the above-

mentioned band-emissivity method.  

 

To summarize, NeuroFlux is made of a battery of specialized NNs (one for each atmospheric layer k 

and for each type of flux -upward or downward-), the inputs of which include the temperature and gas 

(water vapor and ozone) profiles, the surface characteristics and the mean carbon dioxide 

concentration, whereas the cloud characteristics are processed by a separate parameterization. This 

way of doing reduces the dimension of the individual NNs, compared to a system where all 

computations would be performed by a single NN.  With that design, NeuroFlux is about eight times 

faster than EC-OPE. 

  

  

Figure 3.  Statistics of the differences between the computations of NeuroFlux and those of 
EC-OPE: cooling rates from NeuroFlux minus cooling rates from EC-OPE. ECMWF 6-hour forecasts, 
L50 T319 (about 60 km horizontal resolution). 1 February 1999, 00, 06, 12 and 18 UTC. The infrared 
cooling rates are the contribution of the infrared radiation to the variations of temperature over time. 
They are proportional to the derivative of the net fluxes with respect to pressure.   
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The accuracy of NeuroFlux has been assessed through code-by-code comparisons, climate simulations, 

and 10-day forecasts. Figure 3 and 4 illustrate the performance of the version that fits the 50-level 

vertical resolution that was used in the ECMWF operational forecast system in 1999. The accuracy of 

NeuroFlux is comparable to the accuracy of EC-OPE, with a neutral impact on the simulations. In 

particular the uncertainty introduced by NeuroFlux in the cloud cover simulations was shown to be 

much smaller than that one induced by the reduced temporal frequency of radiation computation in the 

ECMWF climate simulations (Chevallier et al., 2000b). 

 

 

 
 
Figure 4.  L50 T319 (about 60 km horizontal resolution) simulations: forecast verification for 
temperature expressed in terms of mean temperature bias over the Northern Hemisphere (12 
cases) The forecast system uses either EC-OPE (full lines) or NeuroFlux (circles) 
 

Even though the inputs of the NNs in NeuroFlux do not include the cloud profiles, some of the NNs 

reach sizes that are unusually large. For instance, the NN that compute the clear-sky upward fluxes in a 

60-layer vertical grid contains about 200 inputs and 60 outputs. As a consequence of this huge variable 

space, the set up of the training datasets is particularly involving.  It relies on the sampling of hundreds of 

thousands of atmospheric profiles with a simple topologic approach, as described by Chevallier et al. 

(2000a). Similar work is done each time the vertical resolution is increased, because new levels are 
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expected to provide original information about the profiles that cannot be obtained by a simple 

interpolation from the lower resolution datasets. Each version of the training datasets includes more than 

ten thousand profiles. 

 

Despite the large number of synoptic weights in NeuroFlux, the partial derivatives of the computed 

fluxes with respect to atmospheric variables (i.e. the Jacobians) contain features that are considered not 

to be realistic (Chevallier and Mahfouf 2000).  The characteristics of the small noise of the computed 

fluxes (Figure 3) show up in the flux Jacobians.  This is different from the behavior of the smaller NNs 

presented in Section 2 (Table 3).  Regularization techniques, such as that one proposed by Aires et al. 

(1999), only partially improve the quality of the NN computation.  Larger NNs may solve the problem, 

but would complicate the training even more and would slow down the code, making it less attractive.  

This issue of having correct sensitivities is very important for the application to 4D-Var where 

linearizations of the parameterizations are used. However, the approach of NeuroFlux allows for an 

elegant solution. Equation (8) is differentiated as: 

  

 (9) 

 

Equation (9) is used to calculate the flux perturbations. Its terms are determined as follows. The ak’s 

and the Fk’s are obtained from NeuroFlux. A pre-computed mean Jacobian matrix, instead of the 

unsatisfactory NeuroFlux Jacobians, allows for a reasonably accurate estimation of the dFk’s using a 

first-order Taylor approximation, since those partial fluxes are weakly non-linear. Finally, the dak’s are 

obtained analytically from the tangent-linear version of the ak model.  

 

This approach is faster than the full tangent-linear model of NeuroFlux by almost a twofold factor, which 

makes it even more attractive. It is being evaluated as part of an improved version of the 4D-Var 

linearized physics at ECMWF, which introduces the treatment of the interaction between cloud and 

radiation (Janisková et al. 2002). This package includes NeuroFlux, a shortwave radiation model and a 
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diagnostic cloud scheme, on top of the currently-operational simplified and linearized physics. It is 

evaluated by studying the linearized time evolution of analysis increments with reference to the non-linear 

computation using the full physics of the forecast model. An improvement (respectively a degradation) 

of the tangent-linear trajectory makes it closer to (respectively further away from) the non-linear one.  

Figure 5 illustrates the positive impact of the new physics on the wind increments after a 12-hour 

integration, with a global improvement of 3.3%. Therefore the tangent-linear wind increments are more 

realistic when the new physical package is used. Preliminary results show a subsequent improvement of 

the forecast quality (Janisková, et al., 2002).  

 

 

Figure 5. L60 T159 (about 125 km horizontal resolution). Zonal mean impact of the new 
linearized physics (with NeuroFlux) on the zonal component of the wind, in m.s-1, in a 12-hour 
simulation starting on 15 March 2001 00 UTC. Negative (respectively positive) values indicate 
an improvement (respectively a degradation) compared to the previous linearized physics. Both 
linearized physics are evaluated with reference to the non-linear run. 
 



 
 24 

4. Wave Application: A Neural Network Approximation for Nonlinear Interactions in 
Wind Wave Models. 
Ocean wind wave modeling for hindcast and forecast purposes has been at the center of interest of 

wave forecasters for many decades.  Numerical prediction models are generally based on a form of the 

spectral energy or action balance equation 

  

swdsnlin SSSS
Dt
DF

+++=                                                                           (8) 

 

where F is the spectrum,  Sin  is the input source term, Snl is the nonlinear interaction source term, Sds is 

the dissipation or 'whitecapping' source term, and Ssw represents additional shallow water source terms. 

 The JONSWAP study (Hasselman et al 1973) identified the active role of the nonlinear interactions in 

wave growth.  The SWAMP study (SWAMP Group 1985) then identified the need for explicit 

modeling of Snl in wave models.  State-of-the-art or so-called third generation wave models therefore 

explicitly model this source term. 

 

In its full form (e.g., Hasselmann and Hasselmann 1985), the calculation of the interactions Snl requires 

the integration of a six-dimensional Bolzmann integral:   

 

 

             

 (9) 

 

 

where the complicated coupling coefficient G contains moving singularities (K. Hasselmann 1963).  This 

integration requires roughly 103 to 104 times more computational effort than all other aspects of the 

wave model combined.  Present operational constraints require that the computational effort for the 

estimation of Snl should be of the same order of magnitude as the remainder of the wave model.  This 
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requirement was met with the development of the Discrete Interaction Approximation (DIA, 

Hasselmann et al 1985).  The development of the DIA allowed for the successful development of the 

first third-generation wave model WAM (WAMDI Group 1988, Komen et al. 1994).  More than a 

decade of experience with the WAM model and its derivatives has identified shortcomings of the DIA. 

The DIA tends to unrealistically increase the directional width of spectra, has a systematic spurious 

impact on the shape of the spectrum near the spectral peak frequency, and has a much too strong 

signature at high frequencies.  In present third generation wave models, these deficiencies can be 

countered at least in part by the dissipation source term Sds, which is generally used for tuning the energy 

balance in the equation (8).  Although this approach often gives good results, it is counterproductive, 

because it prohibits development of dissipation source terms based on solid physical considerations.  

With our increased understanding in the physics of wave generation and dissipation, this becomes an 

even bigger obstacle impeding further development of third-generation wave models. 

 

Considering the above, it is of crucial importance for the development of third generation wave models 

to develop an economical yet accurate approximation for Snl.  Here, we explore a Neural Network 

Interaction Approximation (NNIA) to achieve this goal (see also Krasnopolsky et al 2001a,b).  NNs 

can be applied here because the nonlinear interaction (9) is essentially a nonlinear mapping (symbolically 

represented in eq. (9) by T) which relates two vectors (2-D fields in this case).  Thus, the nonlinear 

interaction source term can be considered as a nonlinear mapping between a spectrum F and a source 

term Snl 

 

   Snl = T(F) ,        (10) 

 

where T is the exact nonlinear operator given by the full Bolzmann interaction integral (9) (Hasselmann 

and Hasselmann 1985, Resio and Perrie 1991).  Discretization of S and F (as is necessary in any 

numerical approach) reduces (10) to continuous mapping of two vectors of finite dimensions.  Modern 

high resolution wind wave models use descretization on a two dimensional grid which leads to 
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dimensions of S and F vectors of order of N > 600 (Tolman 1999).  It seems unreasonable to develop 

a NN approximation of such a high dimensionality (more than 600 inputs and outputs).  Moreover, such 

a NN will be grid dependent.          

In order to reduce the dimensionality of the NN and convert the mapping (10) to a continuous mapping 

of two finite vectors independent on the actual spectral discretization, the spectrum F and source 

function Snl are expanded using systems of two-dimensional functions each of which (F i and ? q) creates 

a complete and orthogonal two-dimensional basis 
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where for x i and yq we have 

 

∫∫∫∫ Ψ=Φ= qnlqii SyFx ,
,       (12) 

 

where the double integral identifies integration over the spectral space.  Because both sets of basis 

functions {F i}i=1,…,n and {? q}q=1,…,m  are complete, increasing n and m in (11) improves the accuracy 

of approximation, and any spectrum F and source function Snl can be approximated by (11) with a 

required accuracy. Substituting (11) into Eq. (10) we can get 

 

  Y = T (X),         (13) 

 

which represents a continuous mapping of the finite vectors X ∈ ℜn  and Y ∈ ℜ m , and where T still 

represents the full nonlinear interaction operator.  This operator can be approximated with a NN with n 

inputs and m outputs and k neurons in the hidden layer 

 

  Y = TNN (X)          (14) 
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The accuracy of this approximation (TNN) is determined by k, and can generally be improved by 

increasing k. 

 

To train the NN approximation TNN of T, a training set has to be created that consists of pairs of vectors 

X and Y.  To create this training set, a representative set of spectra Fp has to be generated with 

corresponding (exact) interactions Snl,p using eq. (9).  For each pair (F, Snl)p, the corresponding  

vectors (X,Y)p are determined using eq. (12).  These pairs of vectors are then used to train the NN to 

obtain TNN. 

 

After TNN  has been obtained by training, the resulting NN Interaction Approximation (NNIA) algorithm 

consists of three steps: (1) decompose the input spectrum, F, by applying Eq. (12) to calculate X; (2) 

estimate Y from X using Eq. (14); and compose the output source function, Snl, from Y using Eq. (11). 

 

A graphical representation of the NNIA algorithm is shown in Figure 6. 
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Figure 6.Graphical representation of the NNIA algorithm. 
The above describes the general procedure for developing an NNIA. Development of an actual NNIA 

requires the following steps: (1) select basis functions F i and ? q and the number of each (n,m); (2) 

design a NN topology (number of neurons k); (3) construct a representative training set; and (4) select 

training strategies. 

 

The first three points all have a significant impact on both accuracy and economy of a NNIA. 

Unfortunately, there is no pre-defined way to tackle these issues as mentioned in section 2.  It is 

therefore unavoidable that the development of a NNIA involves multiple iterations.  The first 

requirement for a NNIA to be potentially useful in operational wave modeling is that the exact 

interactions Snl are closely reproduced for computational costs comparable to that of the DIA.  The 
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following shows the potential of this approach with the design of a simple ad-hoc NNIA. 

 

To address the basic feasibility of a NNIA, we have considered a NNIA to estimate the nonlinear 

interactions Snl(f,?) as a function of frequency f and direction ?  from the corresponding spectrum 

F(f,?).  Here we present the major results of this study to illustrate our approach (for more details see 

Krasnopolsky et al. 2001a).  To train and test this NNIA, we used a set of about 20,000 simulated 

realistic spectra for F(f,?), and the corresponding exact estimates of Snl(f,?) (Van Vledder et al 2000).  

Comparison of simulated spectra with spectra generated by the WAVEWATCH model (Tolman 1999, 

Tolman and Chalikov 1996) shows that the approach, which we use for simulating spectra, allowed us 

to simulate reasonably realistic and complicated spectra describing a broad range of wave systems.  

Separate data sets have been generated for training and validation.  

 

As is common in parametric spectral descriptions, we choose separable basis functions where 

frequency and angular dependencies are separated. For F i this implies: 

 

  )()(),( ,, θφφθ θ jifiji ff =Φ⇒Φ       (15) 

A similar separation is used for ? q.  Considering the strongly suppressed behavior of F and Snl for f → 

0, and the exponentially decreasing asymptotic behavior for f → ∞, generalized Laguerre's polynomials 

(Abramowitz and Stegun 1964) are used to define f f and ? f.  Considering that no directional 

preferences exist in F and Snl, Fourier decomposition is used for f ? and ? ?. The number of base 

functions is chosen to be n = 51 and m = 64 to keep the accuracy of approximation for F on average 

better than 2% and for Snl  - better than 5-6%.  The number of hidden neurons was k = 30, which 

allows a satisfactory NN approximation of the mapping (13) using (14). 

 
Table 5.  RMSE statistics for 10,000 Snl 

 
 Mean RMSE s RMSE Max RMSE 

DIA 0.0133 0.0111 0.104 
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NNIA 0.0068 0.0063 0.065 
      

Table 5 compares three important statistics for the source function RMS errors (with respect to 

exact solution) calculated using DIA and NNIA for 10,000 spectra (independent validation set).  The 

NNIA is nearly twice as accurate as DIA.   

Figure 7.  RMSE as functions of frequency f and angle (averaged over entire test set).  Dashed line – 
error of approximation (lower bound for all other errors).  Solid line – DIA, line with squares – NNIA 
(n=51:k=20:m=64), and line with triangles – NNIA (51:30:64)  

 

 

Figure 7 shows mean RMSE as functions of the frequency f (left) and the angle ? (right).  It also 

illustrates the improvement of the NNIA accuracy by increasing the number of neurons, k, in the  

 

hidden layer from 20 to 30.  Numbers in Table 5 correspond to a NNIA with 30 neurons in the hidden 

layer (51:30:64).   
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And finally, Figure 8 compares the DIA, NNIA, and exact algorithms in terms of the accuracy and 

computational efficiency.  The current preliminary version of the NNIA algorithm is twice as accurate 

and only about 5 times slower than the DIA algorithm.  In the current version of the wind wave models, 

an algorithm that is up to 20 times slower than DIA can be accommodated; therefore, we still have 

enough room for further improving the accuracy of the NNIA.  Considering that no optimization has yet 

been applied in the development of the NNIA composition and decomposition procedures, it appears 

reasonable to expect a final NNIA algorithm with computation requirements similar to DIA but with 

significantly higher accuracy. 

 

Figure 8.  Comparison of the accuracy and computational efficiency of the DIA, 
NNIA, and exact algorithms.  The horizontal time scale is logarithmic.   
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5. Summary and discussion 

 

In this paper we presented a recently emerged NN application developed by the authors for 

simplifying and accelerating time-consuming calculations in environmental numerical models using neural 

network techniques.    Parameterizations of physical, chemical, and biological processes, which occur at 

different scales, constitute an important class of such calculations.  It is shown that, from a mathematical 

point of view, descriptions of such processes can usually be considered as continuous or almost 

continuous mappings (dependencies between two vectors).  It is known that neural networks are a 

generic tool for approximation of such mappings and, therefore, can be used for fast and accurate 

approximation of parameterizations of such processes.   NNs can also easily provide analytical 

Jacobians.  Because the NN Jacobian is computationally cheap, this approach is expected to be also 

very beneficial when used in 3-D and especially in 4-D variational data assimilation systems.  We 

applied this approach to four specific problems associated with oceanic, atmospheric, and wave 

modeling.  

   

The first and second applications considered in the paper deal with the oceanic equation of state, which 

is used for estimating the density and salinity of seawater in ocean circulation models.  Separate neural 

networks for density and salinity were developed using the UES as a basis.  Although the estimation of 

density represents a forward problem, estimating salinity from the UES represents a complicated inverse 

problem, which has been very efficiently solved using the NN approach.  The accuracy of the neural 

network-generated densities and salinities were of the same order as those obtained directly from the 

UES itself.  However, the time required to perform the calculations of density using the neural network 

and the neural network Jacobian is several times less than that for UES.  The time required for 

calculating salinity using the neural network is several hundred times less than that required for the 

numerical inversion of the USE.  Consequently, this approach has direct application to numerical ocean 

models where the equation of state must be estimated repeatedly.  At NCEP, a NN equation for 

seawater density is currently used in an oceanic model.  
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In the third application, the neural network approach was shown to successively handle the 

parameterization of infrared radiation in atmospheric models and to improve the tradeoff between speed 

and accuracy of such computation. In particular, the scheme described allows speeding up the 

computational time by a factor of eight compared to the reference model, while not affecting the quality 

of the atmosphere simulations. Further improvements of the method include the use of a more accurate 

reference model in the training phase, such as that currently operational at ECMWF (Morcrette et al. 

2001).  The high number of variables involved in this NN application made it necessary to develop 

original approaches, such as for the set-up of the training dataset.  Also, the model computations are 

split into several modules, each one of them being parameterized by a specific NN.  Despite this 

strategy, the NNs used are still very large, which affects the quality of the Jacobians, because it makes 

the training more difficult.  Further increase of the vertical resolution, or the introduction of additional 

input or output variables, might further reduce the robustness of the model.  This is an obvious limitation 

in the framework of the forecast models, which complexity constantly increases.  However, the 

approach appears to be suitable for the variational assimilation, where other parts of the physics are 

very simplified and where the speed factor is crucial.  Also, some other aspects of the radiation 

computation, such as the cloud horizontal heterogeneity, are crudely handled by forecast models and 

may benefit from NN parameterizations, as illustrated by Faure et al. (2001).   

 

The fourth application deals with the nonlinear wave-wave interactions in wind wave models.  A 

prototype of the NN approximation for this interaction is presented in this work.  The NNIA 

calculations of Snl are about five orders of magnitude faster than the exact computation.  The NNIA 

calculations are twice more accurate than those from DIA (oversimplified approximation, which is 

currently used in the wind wave models) and require  only 4-5 times more computational effort than the 

DIA calculations with less than 5% of this time spent in the actual NN part of the algorithm.   

Decomposition of the input spectra F and composing the source function Snl from the NN output 

accounts for the rest.  This decomposition (i) significantly reduces the size of the NN and (ii) makes the 
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approach practically independent on the model grid and resolution. 

 

These four applications illustrate the strengths and limitations of the NNs for the application to the fast 

simulation of environmental processes.  In the case of retrievals, as discussed by Krasnopolsky (1997) 

and Krasnopolsky and Schiller (2002), neural networks compete with other statistical methods, and 

usually perform better than those.  This is because NNs are able to optimize the statistical link between 

the inputs and the outputs, provided that a proper (i.e. diverse and regularly spread) training dataset is 

gathered.  In the present case, a sufficiently accurate physically based direct model is usually available.  

The neural networks are likely to be faster, but significant speed gains can also be obtained with more 

powerful computers, making other parameterizations affordable.  Also, the purely statistical formulation 

of the neural networks often makes the refinements of their simulations, like additional inputs and 

outputs, or more complex physics, more difficult than with an explicit physics.   

 

The simulation of environmental processes may involve a large number of inputs (i.e., several hundreds), 

which make the NN too complex and complicates the training.  For this complexity problem, two 

possible solutions were developed and illustrated: the input and output vectors may be projected on a 

basis (e.g., the NNIA application) or a battery of smaller NNs may be used (e.g., infrared radiation 

application).  

 

Finally, a cheap computation of Jacobian is one of the advantages of the NN approach.  Using this 

Jacobian in a combination with the tangent-linear approximation can additionally accelerate calculations 

(e.g., the seawater density application).  However, since the Jacobian is not trained, it is simply 

calculated through direct differentiation of a trained NN. For large NNs (e.g., infrared radiation 

application) the accuracy of the NN Jacobian may not be sufficient for using with the tangent-linear 

approximation.  Several solutions can be offered for this problem.  First, the mean Jacobian can be 

calculated and used (e.g., infrared radiation application).  Second, the Jacobian can be trained if 

included as actual additional outputs in the NN or if trained as a separate additional NN.  This solution, 
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however leads to an increase of the NN complexity or to additional time for the Jacobian calculations.  

Third, regularization techniques can be used to stabilize the Jacobians (e.g. Aires et al. 1999).  For 

instance, the error (or cost) function, which is minimized in the process of the NN training, can be 

modified to accommodate the Jacobian.  Mathematically speaking, the Euclidian norm, which is usually 

used for calculating the error function, should be changed to the first order Sobolev norm.  With such a 

change the NN is trained to approximate not only the function (as with the Euclidian norm) but also the 

function’s first derivatives.  Therefore, a new error function E can be expressed as a superposition of a 

standard error function E0 and a Jacobian error function EJ  

 

 

 

 

where ∂Ft/∂x i is the first derivative’s training value calculated from the exact function to be 

approximated.  This solution does not change the number of the NN outputs; however, it may require 

more hidden neurons and may significantly complicate the minimization during the training since the 

complexity of the error function increases. As a consequence, the Jacobian modeling for large NNs 

remains an open issue. This reflects the fact that one way of improving the computational efficiency of a 

direct model is to degrade the quality of the derivatives, while keeping the direct model within a given 

noise. 

     

NNs obviously provide powerful solutions for the simulation of environmental processes, but like any 

other parameterization, their relevance needs to be regularly re-evaluated with respect to the particular 

computational and scientific contexts where they are developed and used. 
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